Experimental Study and Modelling of the Thermal Conductivity of Sandy Soils of Different Porosities and Water Contents

نویسندگان

  • Hua Jin
  • Yu Wang
  • Qiang Zheng
  • Edmund Chadwick
چکیده

This paper at first reports an experimental work to test the thermal conductivity of formulated sandy soil specimens of different porosities and water contents. Both needle probe and hot-plate methods were conducted and compared. It has been confirmed that the needle probe method has a better accuracy for the measurement of unsaturated soil thermal conductivity, and that the pore size distribution plays an important role on unsaturated soil thermal conductivity. Secondly, it gives out an extensive review on the modelling work, and investigates two major types of empirical models in detail. Two generalized formulas have been suggested to mathematically characterise the two types of models and tested using the experimental data. Finally, in terms of the intrinsic relation to the pore size distribution and the similarity between the thermal conductivity and water retention characteristics of unsaturated soils, a soil water retention model has been suggested and tested to describe unsaturated soil thermal conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects

Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...

متن کامل

Impact of Distillery Effluent and Salts on Hydraulic Conductivity of a Sandy Loam Soil

Irrigation with distillery effluent, besides influencing crop yield, may have considerable impact on physical properties of soil because of its high salt and organic carbon contents. This experimental study was conducted to evaluate the effect of distillery effluent on hydraulic conductivity of a sandy loam alluvial soil and compare the effect of inorganic salts of potassium (K) with that of di...

متن کامل

Experimental study of the results of adding alumina nanoparticles on viscosity and thermal conductivity of water and ethanol nanofluids

In recent decades, the use of nanofluids has attracted much attention due to its application in various fields such as medical and industries like oil and gas. The combination of nanoparticles with base fluids and its type can produce different results depending on the characteristics of the nanoparticles, one of which is the effect of changes in the viscosity and thermal conductivity of the na...

متن کامل

Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injecte...

متن کامل

The Analysis of Experimental Process of Production, Stabilizing and Measurement of the Thermal Conductivity Coefficient of Water/Graphene Oxide as a Cooling Nanofluid in Machining

The abrasion is a significant issue, especially in machining of rigid steels. A functional and suitable approach for enhancing the heat transfer from machining area is using an intermediate fluid with higher heat transfer potential instead of common fluids. The objective of this experimental study is to discuss production, stability and thermal conductivity examination of water/graphene oxide n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017